Math 53 Discussion Problems Oct 15

1. Find $\frac{\partial w}{\partial v}$ when $u=0, v=0$, if $w=x^{2}+\frac{y}{x}, x=u-2 v+1, y=2 u+v-2$
2. Find $\frac{\partial w}{\partial u}$ when $u=\frac{1}{2}, v=1$, if $w=x y+y z+x z, x=u+v, y=$ $u-v, z=u v$
3. Find $\frac{\partial w}{\partial r}$ when $r=1, s=-1$, if $w=(x+y+z)^{2}, x=r-s, y=$ $\cos (r+s), z=\sin (r+s)$
4. Suppose that the equation $F(x, y, z)=0$ implicitly defines each of the three variables x, y and z as functions of the other two. If F is differentiable and F_{x}, F_{y} and F_{z} are all nonzero, show that

$$
\frac{\partial z}{\partial x} \frac{\partial x}{\partial y} \frac{\partial y}{\partial z}=-1
$$

5. Find the derivative of $f(x, y, z)=x y+y z+x z$ at the point $(1,-1,2)$ in the direction of $\langle 3,6,-2\rangle$.
6. Find the derivative of $f(x, y, z)=3 e^{x} \cos (y z)$ at the point $(0,0,0)$ in the direction of $\langle 2,1,-2\rangle$.
7. Find the directions in which $f(x, y, z)=\frac{x}{y}-y z$ increases and decreases most rapidly at the point $(4,1,1)$. Then find the derivative of the function in these directions.
